Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production

نویسندگان

  • Osmar V Carvalho-Netto
  • Marcelo F Carazzolle
  • Luciana S Mofatto
  • Paulo JPL Teixeira
  • Melline F Noronha
  • Luige AL Calderón
  • Piotr A Mieczkowski
  • Juan Lucas Argueso
  • Gonçalo AG Pereira
چکیده

BACKGROUND The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. RESULTS In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. CONCLUSIONS Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Novel Saccharomyces cerevisiae Strains for Bioethanol Active Dry Yeast (ADY) Production

The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjecte...

متن کامل

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Fermentation of lignocellulosic material: A study on bacterial contamination and yeast physiology

Progressive depletion of oil and conventional fossil fuels, an increased energy demand and an increased struggle for national energy security has led to the development of alternative biobased fuels, bioethanol being one of them. Bioethanol can be made from many different raw materials, and based on this are classified as 1 generation and 2 generation. This research work dealt with 2 generation...

متن کامل

Draft Genome Sequence of Saccharomyces cerevisiae IR-2, a Useful Industrial Strain for Highly Efficient Production of Bioethanol

We sequenced the genome of Saccharomyces cerevisiae IR-2, which is a diploid industrial strain with flocculation activity and the ability to efficiently produce bioethanol. The approximately 11.4-Mb draft genome information provides useful insights into metabolic engineering for the production of bioethanol from biomass.

متن کامل

Biotechnology strategies with industrial fuel ethanol Saccharomyces cerevisiae strains for efficient 1st and 2nd generation bioethanol production from sugarcane

Background In Brazil the production of fuel ethanol is based on the fermentation of sucrose from sugarcane by selected industrial Saccharomyces cerevisiae yeast strains [1-3], a mature and highly competitive technology. Taking into account that the feedstock costs have a major role in the overall economics of the process, it is expected that more efficient conversions of sucrose into ethanol (1...

متن کامل

Draft Genome Sequence of Saccharomyces cerevisiae NAM34-4C, a Lactic Acid-Assimilating Industrial Yeast Strain

We determined the genome sequence of industrial Saccharomyces cerevisiae strain NAM34-4C, which would be useful for bioethanol production. The approximately 11.5-Mb draft genome sequence of NAM34-4C will provide remarkable insights into metabolic engineering for effective production of bioethanol from biomass.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015